
UNITED STATES DEPARTMENT OF THE INTERIOR

GEOLOGICAL SURVEY

A general purpose ANSI FORTRAN-IV
subroutine system for sorting data

by

Gerald lan Evenden

Open-File Report 76-306

1976

This report is preliminary and has not
been edited or reviewed for conformity
with U.S. Geological Survey standards.

Contents Page

Abstract 1

Disclaimer 2

Introduction 3

Description of sorting system 4

Conclusion 7

References 8

Appendix 1. - Example program 9

2. - Listing of sorting system 12

FORTRAN sorting system. Page 1

Abstract

A system of ANSI FORTRAN subroutines provides FORTRAN
programmers with a transportable data sorting system.
Flexibility is provided through user written input, output
and comparison routines.

.FORTRAN sorting system. Page 2

Disclaimer.

Although these subroutines have been subjected to many
tests and considerable usage, a warranty on accuracy or
proper functioning is neither implied nor expressed.

FORTRAN sorting system. Page 3

Introduction.

The lack of a- standard, general purpose, intrinsic

sorting function is a recurrent problem in FORTRAN

programming. Although some manufacturers and computer

centers supply FORTRAN callable sorting routines, they

frequently lack transportability because of their

proprietary status or their use of machine-dependent

features. This problem has created an unnecessary burden on

programmers faced with trying to create transportable

software and involved with conversion of software from one

computer to another.

The sort-system presented here is coded in ANSI

FORTRAN-IV and represents a transportable, yet flexible

method of providing the sorting function to FORTRAN

programs. The principle deficiency of the routine is that

it obviously cannot (or, at least, should not) perform as

well as well coded, machine taylored software.

FORTRAN sorting system. Page 4

I General description of the sorting system.

Basic versatility of this sorting system is provided by

the user preparing the input, output and comparison routines

and passing them as arguments to the sorting system.

Complexity of input and output editing, data types and sort

key structure is limited only by the user's ability to

define his problem. The sorting system's function is

limited to controlling appropriate execution of these

routines and auxiliary scratch files. It should be noted

that "input" and "output" only refer to transferal of the

data between the user and the sort system and need not

involve input or output with peripheral devices. The only

other requirements of the user is to provide the sorting

system with work storage and data record length. This

method is similar to that employed by COBOL (except for sort

key specification and working storage) and Burroughs' (1968)

extended ALGOL sort procedure.

Subroutine SORT (user entry point) is the main control

segment of the sorting system. User parameters are checked,

the work storage is divided into working units (through

internal variables IAS, IAE, IOS, and IOE) and the sorting

and merging phases are executed by respective calls to

routines SORTA and SORTB. Description of the SORT input

parameters is contained in the comments of subroutine SORT

listed in Appendix 2 and an example calling program is
4

provided in Appendix 1.

FORTRAN sorting system.. Page 5

Subroutine SORTA inputs the data to t;he sorting system

by repeatedly calling the user input routine until the user

informs the system that the end of data \\ as occurred. If

the work area is filled prior to an end of data condition,

the data is sorted in memory by a call to SORTD and output

as a logical sorted block to the scratch files and the

system is informed that a merging phase must follow the

sorting phase. If, however, the end of data condition

occurs prior to scratch file output tho sorted data is

returned directly to the user's output routine and the sort

operation is terminated without the scratch files and merge

phase being used.

Innumerable methods are available for memory sorting.

My timing trials of some of the methods analyzed and

translated to FORTRAN by Loeser (1974) indicated that

QUICKERSORT by Scowen (1965) was a reasonable choice. This

decision was also tempered by QUICKEUSQRT's lack of

non-intrinsic function requirements (such as a random number

generator) and the non-objective reason O f minimum code.

SORTD (Loeser 's routine SHORT) and KSOU'? were necessarily

modified to eliminate Loeser 's diagnostic counters and to

include the usage of the user-comparison routine and

employment of the record index array.

Of the several merging methods described in Sorting

Techniques (IBM, 1965) the balanced mfcrge (in subroutine

SORTB) was chosen on the grounds of overall simplicity.

FORTRAN sorting system. Page 6

Balanced merging requires 4 (NBC=2) or more scratch files

with a current limitation of 14 (NBC=7). The upper limit

can easily be changed by altering the dimensions of vector

IA in routine SORTS, vectors IAS f IAE f NOUT, NIN f NINB in

the common area SORTC, and parameter NBMAX data statement

value in routine SORT to a value of one-half the maximum

number of files allowed. Users selection of the number of

scratch files is a choice between increased memory

requirements of a large NBC (for I/O buffer areas) and a

decreased number of merge passes.

The subroutines SORTE , SORTF, SORTG and SORTH provide

for scratch file I/O handling. In general, this is the

weakest part of the sorting system. Because I/O control

provided by ANSI FORTRAN is primitive, improvements can

often be made in these routine when manufacturer's extended

FORTRAN I/O statements are available. Subroutine SORTE

handles merge phase switching of input/output status of each

scratch file. Subroutines SORTF and SORTG are employed for

scratch input and SORTH for scratch output.

FORTRAN sorting system. Page 7

Conclusion.

This sorting system has performed well with , small to

medium volumes of data and has reduced the problem of

sorting in one application to a trivial portion of the job.

Although this implementation of sorting in FORTRAN is not

the state of the art of sorting, the method of execution is

considered an extremely viable technique for overall

flexibility. In addition, the system provides complete

transportability between computers with ANSI FORTRAN-IV

compilers.

It is hoped that groups involved with language

specifications will recognize that sorting is a requirement

of all types of computer programming and that an effort will

be made in the future to make sort statements an intrinsic

part of all languages.

FORTRAN sorting system. Page 8

References.

Burroughs , 1968, Extended ALGOL reference manual: Burroughs
Corporation, p. 12-1 - 12-5.

IBM, 1965, Sorting techniques: International
Machines Corporation, 100 p.

Business

Loeser, Rudolph, 1974, Some performance tests of
"QUICKERSORT" and descendants: Comm. ACM, v. 17, no.
3, pp. 143 - 152.

Scowen, R. S., 1965, Algorith 271, QUICKERSORT: Comm.
ACM, v. 8, no. 11, p.669-670.

FORTRAN sorting system. Page 9

Appendix 1.

, Example program using the sorting system.

The following program and subroutines provides a simple

example of execution of the sorting system. Two word

records of sequence numbers and random numbers is created in

function IN. This sequence is ordered by ascending value of

the random numbers as a primary key and descending sequence

numbers as the secondary key. The results of the sort

program is printed by the output routine OUT.

C
C EXAMPLE OF SORT EXECUTION.

DIMENSION WORK(30)
EXTERNAL IN,OUT,ICOMP
CALL SORT(IN,OUT,ICOMP,WORK,30,2,2,IER)
PRINT 10,IER

10 FORMATC END IER= l r I10)
STOP
END

C
FUNCTION IN(IREC)
DIMENSION IREC(2)
DATA N/l/
IF (N.GT.20) GO TO 20
IREC(1)=N
IREC(2)=RAN(J)*10.
N=N+1
IN=1
PRINT 10,IREC

10 FORMAT(2I10)
RETURN

20 IN=0
PRINT 30

30 FORMATC END OF INPUT 1)
RETURN
END

C
SUBROUTINE OUT(IREC,K)
DIMENSION IREC(2)
IF (K) 20,30,20

10 FORMAT(2I10)
20 PRINT 10,IREC

GO TO 50

FQRTRAN sorting system. Page 10
Example program.

30 PRINT 40
40 FORMAT(' END OUTPUT 1)
50 RETURN

END

FUNCTION ICOMP(I,J)
DIMENSION 1(2),J(2)

IF (II) 20,10,20
10 II=J(1)-
20 ICOMP=II

RETURN
END

Page 11
FORTRAN sorting system.
Example program.

The results of the print statements follows:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

END OF INPUT
19
10
7

20
6
5
1

13
12
4

18
16
14
11
9
3

17
8
2

15
END OUTPUT
END IER=

1
7
6
3
1
1
0
7
6
0
6
3
3
5
8
4
7
4
0
1

0
0
0
1
1
1
1
3
3
3
4
4
5
6
6
6
7
7
7
8

0

FORTRAN sorting system. Page 12

Appendix 2.
Listing of sorting system.

C
C-
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

SUBROUTINE SORT

PURPOSE..
TO PROVIDE GENERAL, HIGHLY TRANSPORTABLE SORTING
CAPABILITY FOR FORTRAN PROGRAMS.

USAGE..
CALL SORT(INPUT,OUTPT,ICOMP,W,NW,NBC,NWPRC,IER)

PARAMETER DESCRIPTION..
INPUT - USER SUPPLIED INTEGER FUNCTION WHICH RETURNS

INPUT RECORD ARRAY IN THE DUMMY ARGUMENT.
FUNCTIONAL VALUE IS NON-ZERO WHEN VALID DATA
RECORD RETURNED AND ZERO WHEN DATA
ABSENT AND NO MORE RECORDS TO BE INPUT.

OUTPT - USER SUPPLIED SUBROUTINE TO ACCEPT SORTED
OUTPUT RECORDS IN THE FIRST ARRAY ARGUMENT.
THE SECOND INTEGER ARGUMENT CONTAINS A ONE
WHEN DATA PRESENT AND A ZERO WHEN DATA
ABSENT AND PREVIOUS CALL CONTAINS LAST RECORD

ICOMP - USER SUPPLIED INTEGER FUNCTION WHICH
DETERMINES THE PROPER ORDER OF
TWO INPUT DATA RECORD ARRAY ARGUMENTS.
ICOMP.LT.O WHEN 1ST ARC SHOULD PRECEED 2ND.
ICOMP.EQ.O FOR NO DIFFERENCE IN ORDER.
ICOMP.GT.O WHEN 2ND ARC SHOULD PRECEED 1ST.

W - WORK ARRAY OF NW WORDS.
NW - LENGTH OF WORK ARRAY.
NBC - NUMBER OF WORK OUTPUT FILES TO BE EMPLOYED.

NOTE.. 2*NBC FILES WILL BE USED FOR MERGING.
RESTRICTION.. 2.LE.NBC.LE.7

NWPRC - NUMBER OF WORDS IN DATA RECORDS.
IER - ERROR RETURN CODE.

=0 NO ERRORS.
.GT.O PATHOLOGIC PROBLEMS.
=-1 NBC OUT OF RANGE.
=*-2 NWPRC.LT.l
=-3 NW TOO SMALL, MORE WORK AREA REQUIRED.

REMARKS..
THIS SYSTEM WILL EMPLOY FORTRAN LOGICAL UNIT NUMBERS
15 THROUGH 15+2*NB-1. THE USER MUST foOT USE THESE
LOGICAL UNIT NUMBERS DURING EXECUTION OF THIS SYSTEM.

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED..
SORTA ,SORTB ,SORTD ,SORTE ,SORTF*,SORTG ,SORTH , KSORT ,

FORTRAN sorting system. Page 13
Listing of sorting system.

c AND'NAMED'COMMON AREA SORTC.
c
C CODED BY..
C GERALD IAN EVENDEN
C U. S. GEOLOGICAL SURVEY
C DENVER FEDERAL CENTER
C DENVER, COLORADO 80225
C

SUBROUTINE SORT(INPUT,OUTPT,ICOMP,W,NW,
1 NBC,NWPRC,IER)

C
C NOTE THAT SINCE INPUT, OUTPT AND COMP ARE
C NOT EMPLOYED IN SORT THEY ARE DECLARED AS ARRAYS SO THAT
C THEY WILL BE PASSED BY NAME (ADDRESS) TO THE
C THE SUBROUTINES SORTA AND SORTB.
C

DIMENSION INPUT(l),OUTPT(1),ICOMP(1),W(1)
C

COMMON /SORTC/
1 IAS(7),IAE(7),NWPR,NWPR1,NB,NRPS,IOS,IOE,LASTP,
2 NWPB,NOUT(7),NIN(7),NINB(7),KOUT,KOUTL,KIN,
 3 NBPCO ,NBPCI, INLB , IOB , IOUT ,NWOL ,NWLB

C
EQUIVALENCE (N,NBPCO)
DATA NBMAX/7/

C
C CHECK SOME INPUT VARIABLES.

NB^NBC
IF (NB.GT.l.AND.NB.LE.NBMAX) GO TO 10
IER=-1
GO TO 70

10 IF (NWPRC.GT.O) GO TO 20
IER=-2
GO TO 70

20 NWPR=NWPRC
NWPB=NW/(NB+1)
NRPB=NWPB/NWPR
IF (NRPB.GT.O) GO TO 30
IER=-3
GO TO 70

30 IER=0
NWPB=NRPB*NWPR

C
C LAYOUT MEMORY USAGE

IOS=NW-NWPB+1
IOE=NW
IAS(1)=1
IAE(1)=NWPB
DO 40 1=2,NB

IAS(I)=IAS(I-1)+NWPB
IAE(I)=IAE(I-1)+NWPB

40 CONTINUE

FORTRAN sorting system. Page 14
Listing of sorting system.

N=NB-1
I=N*NRPB

50 IF (lOS-IAE(N).GT.I) GO TO 60
N=N-1
I=I-NRPB
GO TO 50

60 NRPS=N*NRPB
NWPR1=NWPR-1

C
C BLOCK SORTING PHASE

LASTP=1
CALL SORTA(W(IAE(N)+1) ,W, INPUT,OUTPT,ICOMP,IER)
IF (lER.NE.O.OR.LASTP.LT.O) GO TO 70

C
C MERGING PHASE REQUIRED

CALL SORTB(W,OUTPT,ICOMP)
C
C ALL DONE

70 RETURN
END

FORTRAN sorting- system. Page 15
Listing of sorting system.

C
C INPUT AND SORTING PHASE.
C

SUBROUTINE SORTA(IP, W, INPUT,OUTPT,ICOMP,IER)
DIMENSION IP(1),W(1),ICOMP(1)

C
COMMON /SORTC/,

1 IAS(7),IAE(7),NWPR,NWPR1,NB,NRPS,IOS,IOE,LASTP,
2 NWPB r NOUT(7),NIN(7),NINB(7),KOUT,KOUTL,KIN,
3 NBPCO,NBPCI,INLB,IOB,IOUT,NWOL,NWLB

C
10 IEO=1

C
C GET INPUT RECORDS AND SET TAG ARRAY.

J=l
DO 40 I=1,NRPS

IF (INPUT(W(J))) 30,20,30
20 N=I-1

IF (N) 80,80,50
30 IP(I)=J

J=J+NWPR
40 CONTINUE

C
C FULL INPUT

N=NRPS
IEO=0

C
C SORT BLOCK(S)

50 CALL SORTD(IP,N,ICOMP,W,W(IOS) ,NWPB,IER)
IF (IER.NE.O) RETURN

C
C CHECK IF ALL DONE BEFORE SCRATCH WRITTEN

IF (IEO.NE.O.AND.LASTP.GT.O) GO TO 90
IF (LASTP.GT.O) CALL SORTE

C
C MOVE SORTED BLOCK(S) TO OUTPUT

IO=IOS
DO 70 1=1,N

K1=IP(I)
K2=K1+NWPR1
DO 60 K=K1,K2

W(IO)=W(K)
10=10+1

60 CONTINUE
IF (IO.LT.IOE) GO TO 70
CALL SORTH(W(IOS),NWPB)
IO=IOS

70 CONTINUE
IF CIEO.EQ.O) GO TO 10
IO=IO-IOS
IF (IO.GT.O) CALL SORTH(W(IOS),10)

80 RETURN
C
C ALL INPUT COMPLETED PRIOR TO SCRATCH FILE DUMP

FORTRAN sorting system. Page 16
Listing of sorting system.

C
C SO JUST PASS IT BACK TO USER.

90 DO 100 1=1,N
CALL OUTPT(W(IP(I)),1)

100 CONTINUE
LASTP=-1

C
C TELL USER OUTPUT ROUTINE WE'RE DONE

CALL OUTPT(W,0)
RETURN
END

FORTRAN sorting system. Page 17
Listing of sorting system.

C
C THIS ROUTINE PERFORMS BALANCED MERGING
C OF THE SCRATCH FILE DATA.
C

SUBROUTINE SORTB (W,OUTPT, ICOMP)
DIMENSION W(l) ,IA(7)

C
COMMON /SORTC/

1 IAS(7) ,IAE(7) ,NWPR,NWPR1,NB,NRPS,IOS,IOE,LASTP,
2 NWPB,NOUT(7) ,NIN(7) ,NINB(7) ,KOUT,KOUTL,KIN,
3 NBPCO ,NBPCI , INLB , IOB , IOUT , NWOL ,NWLB

C
C SWITCH FILES AND LOAD WORK AREA.

10 CALL SORTE
DO 30 1=1, NB
CALL SORTF(I,W(IAS(I)) ,N)
IF (N.GT.O) GO TO 20
IA(I)=0
GO TO 30

20 IA(I)=IAS(I)

30 CONTINUE
IO=IOS

C
C NOTE THAT IA SERVES AS BOTH AN INDEX AND A FLAG VALUE.
C IA(N).GT.O THEN INDEX TO CURRENT INPUT FILE RECORD.
C IA(N).EQ.O THEN INPUT FILE EMPTY (EOF).
C IA(N).LT.O THEN NO MORE DATA IN CURRENT SORT BLOCK.
C ABS(IA(BN)) IS STARTING ADDRESS FOR NEXT BLOCK CYCLE
C
C FIND WINNER AMONG INPUT BLOCKS.

40 LWINF=0
- DO 70 1=1, NB

K=IA(I)
IF (K> 70,70,50

50 IF (LWINF.EQ.O) GO TO 60
IF (ICOMP(W(K) ,W(LWIN))) 60,70,70

60 LWIN=K
LWINF=I

70 CONTINUE
C
C CHECK IF ANY DATA.

IF (LWINF.LE.O) GO TO 160
C
C YES. GOT WINNER, PUT IN OUTPUT

IF (LASTP) 80,90,90
C
C LAST PHASE OUTPUT TO USER ROUTINE

80 CALL OUTPT(W(LWIN) ,1)
LWIN=LWIN+NWPR
GO TO 110

C
C NOT LAST PHASE, SO PUT TO SCRATCH

90 I02=IO+NWPR1

FORTRAN sorting system. Page 18
Listing of sorting system.

DO 100]>IO,IO2
W(I)=W(LWIN)

100 LWIN=LWIN+1
10=102+1

C
C CHECK IF AREA FULL.

IF (IO.LT.IOE) GO TO 110
CALL SORTH(W(IOS),NWPB)
IO=IOS

C
C UPDATE POINTERS

110 IF (LWIN.GT.IAE(LWINF)) GO TO 120
IA(LWINF)=LWIN
GO TO 40

C
C INPUT BLOCK EMPTY

120 I=IAS(LWINF)
CALL SORTF(LWINF,W(I) ,N)
IF (N) 140,130,150

130 IA(LWINF)=0
GO TO 40

140 IA(LWINF)=-I
IAE(LWINF)=I-N-1
GO TO 40

150 IA(LWINF)=I
IAE(LWINF)=I+N-1
GO TO 40

C
C DONE WITH BLOCK CYCLE, CHECK FOR NEXT CYCLE

160 IF (lA(l).EQ.O) GO TO 180
DO 170 1=1,NB

170 IA(I)=-IA(I)
GO TO 40

C
C DONE WITH PHASE

180 IF (LASTP) 210,190,190
C
C DUMP REMAINING RECORD, IF ANY

190 I=IO-IOS
IF (I) 10,10,200

200 CALL SORTH(W(IOS),1)
GO TO 10

C
C TELL CALL SYSTEM THAT JOB IS DONE.

210 CALL SORTE
CALL OUTPT(W,0)

C
C QUIT

RETURN
END

FORTRAN sorting system. Page 19
Listing of sorting system.

C
_ __ .__ ._ _ .___ _ _ .__ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ __ .. ___ _ , _ _ .__ .__ .. _ .. ^^ ̂ _ _ _ .._ _ ̂^ .._ _ _ ̂_ ̂ _ ̂ _ ̂ _ ̂ _ __ ̂ _ ̂ _ ̂ _
M» * « ̂ «M«««W^ « ̂ M»«»^ ̂ «__«__ * «M «M « ̂ ^ ̂ «M «M «M « ̂ «» «M Mft MB MB Mi *» Mi M» Mi W ̂ ̂ ̂ -»

C
C SUBROUTINE SORTD
C
C PURPOSE-
C TO SORT A VECTOR A IN TO A SEQUENCE DETERMINED BY
C A USER SUPPLIED FUNCTION SUBPROGRAM COMP. THE
C VECTOR A MAY BE EITHER IN THE SORT OR A TAG
C (INDEX) TO THE KEY VECTORS.
C
C USAGE-
C CALL SORTD(A,N,COMP,AUX r IWORK,NWORK r IER)
C
C DESCRIPTION OF PARAMETERS-
C A - ON ENTRY N WORDS IN ANY ORDER.
C ON RETURN N WORDS SORTED IN SEQUENCE DETERMINED
C BY COMP.
C N DIMENSION OF VECTOR A.
C COMP - SEQUENCE FUNCTION SUBROUTINE WHICH IS
C CALLED BY KSORT AS
C F=COMP(A(I),A(J),AUX).
C WHEN
C COMP.LT.O A(I) LOWER IN SEQUENCE THAN A(J)
C COMP.EQ.O A(I) IDENTICAL IN SEQUENCE TO A(J)
C COMP.GT.O A(I) HIGHER IN SEQUENCE THAN A(J)
C AUX - AUXILLIARY VECTOR PASSED TO COMP.
C IWORK - WORK VECTOR
C NWORK - DIMENSION OF VECTOR IWORK. SHOULD BE NOT
C LESS THAN 2*LOG2(N).
C IER - RESULTANT ERROR PARAMETER CODED AS FOLLOWS
C IER.EQ.O NO ERRORS
C IER.EQ.1 DIMENSION OF IWORK TOO SMALL.
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED-
C KSORT - SORT PARTITIONING ROUTINE.
C MAY BE EITHER QSORT, QUICKSORT OR QUICKERSORT.
C COMP - MUST BE SUPPLIED BY USER. NOTE THAT COMP
C MUST BE DECLARED EXTERNAL IN CALLING
C PROGRAM.
C
C METHOD/REFERENCE-
C LOESER, RUDOLF, 1974, SOME PERFORMANCE TESTS OF
C QUICKSORT AND DESCENDANTS, COMM. ACM, V. 17,
C NO. 3, P. 143-152.
C MODIFIED BY-
C EVENDEN, G. I., 1974, U. S. GEOLOGICAL SURVEY,
C DENVER, CO. 80225
C
C -*
C

SUBROUTINE SORTD(A,N,COMP,AUX,IWORK,NWORK,IER)
C

DIMENSION A(l) ,COMP(1) ,AUX(1) ,IWORK(1)

FORTRAN sorting system. Page 20
Listing of sorting system.

IER=0
IF (N-l) 90,90,10

10 J=NWORK-2
M=0
LL1=1
LU1=N

20 IF (LU1-LL1) 70,70,30
30 IF (KSORT(A,LL1,LU1,LL,LU,COMP,AUX)) 70,70,40
40 IF (M-J) 60,60,50
50 IER=1

GO TO 90
60 M=M+2

IWORK(M-1)=LL
IWORK(M)=LU
GO TO 20

70 IF (M) 90,90,80
80 LL1=IWORK(M-1)

LU1=IWORK(M)
M=M-2
GO TO 20

90 RETURN
END

FORTRAN sorting system Page 21
Listing of sorting sys

C

C
C SUBROUTINE KSORT
C
C PURPOSE-
C SPLITTING SUBROUTINE FOR SORTD
C BASED ON THE QUICKERSORT ALGORITHM.
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED-
C COMP
C
C REMARKS-
C SEE SORTD AND REFERENCES FOR DETAILS
C
C METHOD/REFERENCE-
C SCOWEN, R. S.,1965,ALGORITHM 271-QUICKERSORT, COMM.
C ACM, V. 8, NO. 11, P. 669-670.
C TRANSLATED TO FORTRAN BY-
C LOESER, RUDOLF, 1974, S.OME PERFORMANCE TESTS OF
C QUICKSORT AND DESCENDANTS, COMM. ACM, V. 17, NO. 3,
C P. 143-152.
C MODIFIED BY-
C EVENDEN, G. I., 1974, U. S. GEOLOGICAL SURVEY,
C DENVER, CO. 80225
C

FUNCTION KSORT(A,LLl,LU1,LL,LU,COMP,AUX)
INTEGER A,T,X,COMP

DIMENSION A(1),AUX(1)

IF (LU1-LL1-1) 10,30,50
10 KSORT=0
20 RETURN
30 IF (COMP(AUX(A(LL1)),AUX(A(LU1)))) 10,10,40
40 X=A(LL1)

A(LL1)=A(LU1)
A(LU1)=X
GO TO 10

50 KSORT=1
IP=(LLl+LUl)/2
T=A(IP)
A(IP)=A(LL1)
IQ=LU1
K=LL1

60 K=K+1
IF (K-IQ> 70,70,120 %

70 IF (COMP(AUX(A(K)),AUX(T))) 60,60,80
80 IF (IQ-K) 120,90,90
90 IF (COMP(AUX(A(IQ)),AUX(T))) 110,100,100

100 IQ=IQ-1
GO TO 80

FORTRAN sorting- system. Page 22
Listing of sorting system.

110 X=A(K)
A(K)=A(IQ)
A(IQ)=X
IQ=IQ-1
GO TO 60

120 A(LL1)=A(IQ)
A(IQ)=T
IF ((IQ+IQ)-(LL1+LU1)) 140,140,130

130 LL=LL1
LU=IQ-1
LL1=IQ+1
GO TO 20

140 LL=IQ+1
LU=LU1
LU1=IQ-1
GO TO 20
END

FORTRAN,sorting system. * Page 23
Listing of sorting system.

C
C SCRATCH FILE CONTROL FOR MERGING.
C

SUBROUTINE SORTE
C

COMMON /SORTC/
1 IAS(7),IAE(7),NWPR,NWPR1,NB,NRPS,IOS,IOE,LASTP,
2 NWPB,NOUT(7),NIN(7),NINB(7),KOUT,KOUTL,KIN,
3 NBPCO,NBPCI,INLB,IOB,IOUT,NWOL,NWLB

C
DATA KOUTS,KD/15,14/
IF (LASTP) 50,30,10

C
C INITIALIZATION CALL.

10 KOUT=KOUTS
KIN=KOUT+NB
KOUTL=KIN-1
DO 20 1=1,NB

NOUT(I)=0
20 CONTINUE

IOB=0
IOUT=KOUT
LASTP=0
RETURN

C
C INTERMEDIATE PHASE

30 M=KIN
N=KOUT
IF (NOUT(l).LE.NBPCO) LASTP=-1
DO 40 1=1,NB

REWIND M
REWIND N
M=M+1
N=N+1
NINB(I)=0
NIN(I)=NOUT(I)
NOUT(I)=0

40 CONTINUE
NWLB=NWOL
INLB=IOUT
M=KIN
KIN=KOUT
KOUT=M
IOUT=KOUT
IOB=0
NBPCI=NBPCO -
NBPCO=NBPCO*NB
IOUT=KOUT
KOUTL=KOUT+NB-1
RETURN

FINAL CLOSE OUT PHASE
50 M=KIN

DO 60 1=1,NB

FORTRAN sorting system. Page 24
Listing of sorting system.

REWIND M
M=M+1

60 CONTINUE
RETURN

C
END

FORTRAN sorting system. Page 25
Listihg of sorting system.

C
C SCRATCH FILE INPUT ROUTINE FOR MERGING
C

SUBROUTINE SORTF(IN,W,NW)
DIMENSION W(l)
COMMON /SORTC/

1 IAS(7) f IAE(7) ,NWPR,NWPR1,NB,NRPS,IOS,IOE,LASTP,
2 NWPB f NOUT(7) f NIN(7),NINB(7) f KOUT f KOUTL f KIN f
3 NBPCO f NBPCI,INLB,IOB,IOUT f NWOL f NWLB

C
C

N=NIN(IN)
IF (N.LE.O) GO TO 40
KF=IN+KIN-1
IF ((N.GT.l).OR.(KF.NE.INLB)) GO TO 10
NW=NWLB
GO TO 20

10 NW=NWPB
20 CALL SORTG(KF,W,NW)

NIN(IN)=N-1
N=NINB(IN)+1
IF (N.LE.NBPCI) GO TO 30
N=l
NW=-NW

30 NINB(IN)=N
RETURN

C
40 NW=0

RETURN
END

FORTRAN sorting system. Page 26
Listfng of sorting system.

C
C SUPPORT ROUTINE FOR SORTF.
C
C
C THIS SEEMINGLY UNHEEDED ROUTINE IS REQUIRED TO
C OPTIMIZE POOR FORTRAN CODE FREQUENTLY GENERATED
C BY IMPLIED DO LOOP LISTS.

SUBROUTINE SORTG(IN,W,N)
DIMENSION W(N)
READ(IN) W
RETURN
END

FORTRAN sorting system. Page 27
Listing of sorting system.

C
C OUTPUT ROUTINE FOR MERGE PHASE FILES.
C

SUBROUTINE SORTH(W,N)
DIMENSION W(N)
COMMON /SORTC/

1 IAS(7),IAE(7),NWPR,NWPRl,NB,NRPS,IOS f IOE,LASTP,
2 NWPB,NOUT(7),NIN(7),NINB(7),KOUT , KOUTL,KIN,
3 NBPCO,NBPCI,INLB ,IOB,IOUT,NWOL f NWLB

C
C
C BUMP SECTION BLOCK COUNT

IOB=IOB+1
IF (IOB.LE.NBPCO) GO TO 10

C
C DONE WITH SECTION, BUMP FILE

IOB=1
IOUT=IOUT+1
IF (IOUT.GT.KOUTL) IOUT=KOUT

C
C BUMP FILE RECORD COUNTER

10 I=IOUT-KOUT+1
NOUT(I)=NOUT(I)+1
NWOL=N
WRITE(IOUT) W
RETURN
END

